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A quantum computational logic is constructed by employing density operators on spaces
of qubits and quantum gates represented by unitary operators. It is shown that this
quantum computational logic is isomorphic to the basic sequential effect algebra [0, 1].
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1. INTRODUCTION

In an interesting paper (Cattaneoet al., in press), the authors develop a new
form of quantum logic based on the theory of quantum computation (Nielsen and
Chuang, 2000; Pittenger, 2001). In this presentation, the semantics are given in
terms of pure states of ann-qubit quantum system and logical connectives are
interpreted as quantum gates represented by unitary operators. The present paper
generalizes the work of Cattaneoet al. (in press) to mixed states of ann-qubit
quantum system. It is also shown that the resulting quantum computational logic is
isomorphic to the basic sequential effect algebra [0, 1]. Sequential effect algebras
were recently introduced to study the sequential action of quantum effects that
are unsharp versions of quantum events (Gudder and Greechie, in press-a,b). For
further details and a discussion of quantum computational semantics, we refer the
reader to Cattaneoet al. (in press).

2. DENSITY OPERATOR COMPUTATIONAL LOGIC

In the theory of quantum computation, aqubit is a two-dimensional quantum
system. A pure qubit state is represented by a unit vector|ψ〉 in the two-dimensional
Hilbert spaceC2. Denoting the standard orthonormal basis forC2 by |0〉 = (1, 0),
|1〉 = (0, 1) we call{|0〉, |1〉} thecomputational basisfor the qubit. We can then

1 Department of Mathematics, University of Denver, Denver, Colorado 80208; e-mail: sgudder@
math.du.edu.

39

0020-7748/03/0100-0039/0C© 2003 Plenum Publishing Corporation



P1: GDX

International Journal of Theoretical Physics [ijtp] pp777-ijtp-461700 April 2, 2003 20:37 Style file version May 30th, 2002

40 Gudder

write

|ψ〉 = a|0〉 + b|1〉
wherea, b ∈ C with |a|2+ |b|2 = 1. For a positive integern, ann-qubit is a 2n-
dimensional quantum system. In this case, the pure states are represented by unit
vectors in⊗nC2 = C2n

. The 2n unit vectors of the form|i1〉 ⊗ · · · ⊗ |i n〉, i j ∈
{0, 1}, j = 1, . . . n, give thecomputational basisfor an n-qubit. It is standard
practice to use the notation

|i1i2 · · · i n〉 = |i1〉|i2〉 · · · |i n〉 = |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |i n〉
An arbitrary puren-qubit state|ψ〉 ∈ C2n

, ||ψ || = 1 has the form

|ψ〉 =
∑

ai1 · · ·in |i1 · · · i n〉 (1)

whereai1 · · ·in ∈ C with
∑ |ai1 · · ·in |2 = 1, i j ∈ {0, 1}, j = 1, . . . , n.

Employing (2.1) we can write

|ψ〉 =
∑

ai1 · · ·in−1 0|i1 · · ·in−1 0〉 +
∑

ai1 · · ·in−1 1|i1 · · · i n−11〉
= |ψ0〉 + |ψ1〉 = |ψ̃0〉|0〉 + |ψ̃1〉|1〉

whereψ0⊥ψ1, ||ψ0||2+ ||ψ1||2 = 1, ||ψ̃0|| = ||ψ0||, ||ψ̃1|| = ||ψ1||.We call|ψ0〉
a 0-vectorand|ψ1〉 a 1-vector. Thus, any puren-qubit state has the unique repre-
sentation as the sum of a 0-vector and a 1-vector in the computational basis. We
think of a 0-vectors as having truth-value “false” and 1-vectors as having truth-
value “true.” LetPi be the orthogonal projections onto the span of thei -vectors,
i = 0, 1. ThenP0+ P1 = I . LetD(C2n

) be the set of density operators onC2n
and

letD = ∪∞n=1D(C2n
). Of course, elements ofD(C2n

) correspond to mixedn-qubit
states. Forρ ∈ D(C2n

) we define theprobabilityof ρ by

p(ρ) = tr(P1ρ) = tr(ρP1)

For example, for a one-dimensional projection|ψ〉〈ψ | we have

p(|ψ〉〈ψ |) = tr(P1|ψ〉〈ψ |P1) = tr(|ψ1〉〈ψ1|) = ||ψ1||2

For the uniformly distributed density operatorI /2n we have

p

(
I

2n

)
= 1

2n
tr(P1) = 2n−1

2n
= 1

2

For ρ , σ ∈ D we writeρ |= σ if p(ρ) ≤ p(σ ). Note that|= is a reflexive,
transitive relation. We writeρ ∼ σ if p(ρ) = p(σ ). Thus,ρ ∼ σ if and only if
ρ |= σ andσ |= ρ. Then∼ is an equivalence relation onD and we denote the
equivalence class containingρ by [ρ]. We define [ρ] ≤ [σ ] if p(ρ) ≤ p(σ ). Then
≤ is well-defined onL = {[ρ] : ρ ∈ D}and is a partial order relation. Ifp(ρ1) = 1,
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we call [ρ1] a tautologyand if p(ρ0) = 0 we call [ρ0] anabsurdity. Then [ρ0] and
[ρ1] are the least and greatest elements of the partially ordered setL, respectively.
For [ρ] ∈ L we definep([ρ]) = p(ρ).

The NOT-gateonC2n
is the unitary operatorN given by the 2n × 2n matrix

N = I2n−1 ⊗ X whereX is the Paul matrix

X =
[

0 1
1 0

]
For ρ ∈ D(C2n

) we define NOTρ by NOTρ = NρN. Then NOTρ ∈ D(C2n
).

SinceX2 = I we haveN2 = I so that NOT(NOTρ) = ρ.

Lemma 2.1. (a) N|ψ〉 = |ψ̃0〉|1〉 + |ψ̃1〉|0〉. (b) N P0N = P1 and N P1N = P0.

Proof: (a) For an arbitrary pure state|ψ〉 ∈ C2n
we have

N|ψ〉 = (12n−1 ⊗ X)(|ψ̃0〉|0〉 + |ψ̃1〉|1〉) = |ψ̃0〉X|0〉 + |ψ̃1〉X|1〉
= |ψ̃0〉|1〉 + |ψ̃1〉|0〉

(b) Applying part (a) we have

N P0N|ψ〉 = N P0(|ψ̃0〉|1〉 + |ψ̃1〉|0〉) = N|ψ̃1〉|0〉 = |ψ̃1〉|1〉
= |ψ1〉 = P1|ψ〉|

Hence,N P0N = P1. SinceP0+ P1 = I , we have

I = N I N = N P0N + N P1N = P1+ N P1N

Hence,N P1N = I − P1 = P0. ¤

It follows from Lemma 2.1 that

p(NOTρ) = tr(P1NρN) = tr(N P1Nρ) = tr(P0ρ)

= tr(ρ)− tr(P1ρ) = 1− p(ρ)

We conclude thatρ |= σ implies that NOTσ |=NOTρ. We define [ρ]′ = [NOTρ].
Then [ρ]′′ = [ρ], [ρ] ≤ [σ ] implies that [σ ]′ ≤ [ρ]′ and [ρ0]′ = [ρ1], [ρ1]′ = [ρ0].
It follows that (L ,≤,′ ) is a bounded orthoposet that we call thequantum compu-
tational logic(QCL).

Following Cattaneoet al. (in press), we now introduce the nonclassical gate√
NOT. Let M be the 2× 2 unitary matrix

M = 1

2

[
1+ i 1− i
1− i 1+ i

]



P1: GDX

International Journal of Theoretical Physics [ijtp] pp777-ijtp-461700 April 2, 2003 20:37 Style file version May 30th, 2002

42 Gudder

We then haveM = √X and
√

N = I2n−1 ⊗ M . (These operators have four square
roots and we are only considering one of them.) LetY be the Pauli matrix

Y =
[

0 −i
i 0

]
and define the unitary 2n × 2n matrix R by R= I2n−1 ⊗ Y. We now define√

NOTρ = √N
∗
ρ
√

N. Of course,
√

NOT(
√

NOTρ) = NOTρ.

Theorem 2.2. p(
√

NOTρ) = 1
2 + 1

2tr(Rρ).

Proof: From the definition of
√

N we have
√

N
∗|ψ〉 = I2n−1 ⊗ M∗(|ψ̃0〉|0〉 + |ψ̃1〉|1〉) = |ψ̃0〉M |0〉 + |ψ̃1〉M |1〉

= |ψ̃0〉
2

[(1− i )|0〉] + (1+ i )|1〉] + |ψ̃1〉
2

[(1+ i )]|0〉 + (1− i )|1〉]

= 1

2
[(1− i )|ψ̃0〉 + (1+ i )|ψ̃1〉]|0〉 +

1

2
[(1+ i )|ψ̃0〉 + (1− i )|ψ̃1〉]|1〉

Hence,

√
N P1

√
N
∗|ψ〉 =

√
N

2
[(1+ i )|ψ̃0〉 + (1− i )|ψ̃1〉]|1〉

= 1

2
[(1+ i )|ψ̃0〉 + (1− i )|ψ̃1〉]M |1〉

= 1

4
[(1+ i )|ψ̃0〉 + (1− i )|ψ̃1〉][(1 − i )|0〉 + (1+ i )|1〉]

= 1

2
|ψ̃0〉|0〉 +

1

2
|ψ̃1〉|1〉 +

i

2
|ψ̃0〉|1〉 −

i

2
|ψ̃1〉|0〉

= 1

2
|ψ〉 + i

2
(|ψ̃0〉|1〉 − |ψ̃1〉|0〉)

=
(

1

2
I + 1

2
R

)
|ψ〉

We conclude that
√

N P1

√
N
∗ = 1

2 I + 1
2 R. Thus,

p(
√

NOTρ) = tr(P1

√
N
∗
ρ
√

N) = tr(
√

N P1

√
N
∗
ρ)

= 1

2
tr(ρ)+ 1

2
tr(Rρ) = 1

2
+ 1

2
tr(Rρ)

¤
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It follows from Theorem 2.2 that

p(NOT
√

NOTρ) = p(
√

NOTNOTρ) = 1

2
− 1

2
tr(Rρ)

For the uniform density operator we have

p

(√
NOT

I

2n

)
= 1

2
+ 1

2
tr

(
R

2n

)
= 1

2

Corollary 2.3. For a one-dimensional projection|ψ〉〈ψ | we have

p(
√

NOT|ψ〉〈ψ |) = 1

2
− Im (〈ψ̃1 | ψ̃0〉)

Proof: Applying Theorem 2.2 gives

p(
√

NOT|ψ〉〈ψ |) = 1

2
+ 1

2
tr(R|ψ〉〈ψ |) = 1

2
+ 1

2
tr[R(|ψ̃0〉|0〉 + |ψ̃1〉|1〉)〈ψ |]

= 1

2
+ i

2
tr[(|ψ̃0〉|1〉 − |ψ̃1〉|0〉)〈ψ |]

= 1

2
+ i

2
tr[(|ψ̃0〉|1〉 − |ψ̃1〉|0〉)(〈ψ̃0|〈0| + 〈ψ̃1|〈1|)]

= 1

2
+ i

2
[〈ψ̃1 | ψ̃0〉 − 〈ψ̃0 | ψ̃1〉]

= 1

2
− Im(〈ψ̃1 | ψ̃0〉)

¤

Thequantum Toffoli gate Tm,n,1 : C2(m+n+1) → C2(m+n+1)
is the unitary operator

given by

T (m,n,1)|i1 · · · im j1 · · · jnk〉 = |i1 · · · im j1 · · · jn〉 | (im · jn + k) (mod 2)〉
Forρ ∈ D(C2m

), σ ∈ D(C2n
), following Cattaneoet al.(in press) we define AND

(ρ , σ ) ∈ D(C2(m+n+1)
) by

AND(ρ , σ ) = T (m,n,1)ρ ⊗ σ ⊗ |0〉〈0|T (m,n,1)

On the QCLL we define AND ([ρ], [σ ]) as [AND (ρ , σ )]. It follows from our
next result that this is well-defined. We denote the projectionP1 onC2n

by P(n)
1 .
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Theorem 2.4. (a) For ρ ∈ D(C2m
), σ ∈ D(C2n

) we have

T (m,n,1)P1T (m,n,1)ρ ⊗ σ ⊗ |0〉〈0| = P(m)
1 ρ ⊗ P(n)

1 σ ⊗ |0〉〈0|
(b) For ρ , σ ∈ D we have p(AND (ρ , σ )) = p(ρ)p(σ ).

Proof: (a) Since

T (m,n,1) P1T (m,n,1)ρ ⊗ σ ⊗ |0〉〈0||i1 · · · im j1 · · · jn0〉
= T (m,n,1)P1T (m,n,1)ρ|i1 · · · im〉σ | j1 · · · jn〉|0〉
= P(m)

1 ρ|i1 · · · im〉P(n)
1 σ | j1 · · · jn〉|0〉

= P(m)
1 ρ ⊗ P(n)

1 σ |0〉〈0||i1 · · · im j1 · · · jn0〉
the result now follows. (b) Forρ , σ ∈ D we have by part (a) that

p(AND(ρ , σ )) = tr(T (m,n,1)P1T (m,n,1)ρ ⊗ σ ⊗ |0〉〈0|)
= tr

(
P(m)

1 ρ ⊗ P(n)
1 σ ⊗ |0〉〈0|)

= tr
(
P(m)

1 ρ
)
tr
(
P(n)

1 σ
) = p(ρ)p(σ )

¤

Forρ , σ ∈ D we define

OR(ρ , σ ) = NOT[AND(NOTρ , NOTσ )]

Applying Theorem 2.4(b) we have

p(OR(ρ , σ )) = p(ρ)+ p(σ )− p(ρ)p(σ )

On the QCLL we define OR ([ρ], [σ ]) = [OR(ρ , σ )] and the previous equations
shows that this is well-defined. In summary, we have defined the logical connectives
NOT, AND, and OR on the QCLL.

3. SEQUENTIAL EFFECT ALGEBRAS

Effect algebras (Dvureˇcenskij and Pulmannov´a, 2000; Foulis and Bennett,
1994; Giuntini and Greuling, 1989; Kˆopka and Chovanec, 1994) and sequential
effect algebras (Gudder and Greechie, in press-a,b) are algebraic systems that
have recently been introduced to study the structure of unsharp quantum events.
An effect algebrais a system (E, 0, 1,⊕) where 0, 1∈ E and⊕ is a partial binary
operation onE that satisfies the following conditions.

(3.1) If a⊕ b is defined, thenb⊕ a is defined andb⊕ a = a⊕ b.
(3.2) If a⊕ b and (a⊕ b)⊕ c are defined, thenb⊕ c anda⊕ (b⊕ c) are defined

anda⊕ (b⊕ c) = (a⊕ b)⊕ c.
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(3.3) For everya ∈ E there exists a uniquea′ ∈ E such thata⊕ a′ = 1.
(3.4) If a⊕ 1 is defined, thena = 0.

We define a partial order relation¹ on E bya ¹ b if there existsac∈ E such
thata⊕ c = b. We writea⊥ b if a ¹ b′. It can be shown that (E,¹,′) is a bounded
orthoposet with least and greatest elements 0 and 1, respectively. Moreover,a⊕ b
is defined if and only ifa⊥ b.

Although there is a general theory of sequential effect algebras, we shall only
be concerned with the commutative case here. Acommutative sequential effect
algebra(SEA) is a system (E, 0, 1,⊕, ◦) where (E, 0, 1,⊕) is an effect algebra
and◦ : E × E→ E is a binary operation that satisfies the following conditions.

(3.5) For everya, b ∈ E, a ◦ b = b ◦ a.
(3.6) For everya ∈ E, 1◦ a = a.
(3.7) If b⊥ c, thena ◦ b⊥a ◦ c anda ◦ (b⊕ c) = a ◦ b⊕ a ◦ c.
(3.8) For everya, b, c ∈ E, a ◦ (b ◦ c) = (a ◦ b) ◦ c.

There are many examples of SEAs (Gudder and Greechie, in press-a,b). How-
ever, for our present discussion, we are only interested in the example [0, 1]⊆ R.
The unit interval ([0, 1], 0, 1,⊕, ◦) is a commutative SEA wherea⊕ b is defined
if a+ b ≤ 1 in which casea⊕ b = a+ b anda ◦ b = ab for all a, b ∈ [0, 1]. If
E and F are SEAs, a mapφ : E→ F is an isomorphismif φ is surjective and
satisfies:

(3.9)φ(1)= 1.
(3.10)a⊥ b if and only if φ(a)⊥φ(b) and in this caseφ(a⊕ b) = φ(a)⊕ (b).
(3.11)φ(a ◦ b) = φ(a) ◦ φ(b) for everya, b ∈ E.

If there is a isomorphism fromE to F we say thatE and F are isomorphic.
Isomorphic SEAs are indistinguishable as far as their SEA structure is concerned.

For 0≤ λ ≤ 1, we define

ρλ = (1− λ)

2n−1
P0+ λ

2n−1
P1 ∈ D(C2n

)

Then p(ρλ) = tr(P1ρλ) = λ. For,ρ , σ ∈ D if p(ρ)+ p(σ ) ≤ 1 we define

[ρ] ⊕ [σ ] = [ρ p(ρ)+p(σ )]

We then have

p([ρ] ⊕ [σ ]) = p([ρ]) + p([σ ])

Moreover, we define [ρ] ◦ [σ ] = AND ([ρ], [σ ]) and we have

p([ρ] ◦ [σ ]) = p([ρ]) p([σ ])

We have thus defined the partial binary operation⊕ and the binary operation◦ on
the QCLL.
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Theorem 3.5. The QCL(L , [ρ0], [ρ1], ⊕, ◦) is a commutative SEA and the logic
order≤ coincides with the effect algebra order¹. Moreover, p: L → [0, 1] is an
isomorphism.

Proof: It is straightforward to show that the commutative and associative laws
(3.1), (3.2) hold inL. To verify (3.3), note that [ρ] ⊕ [ρ]′ = [ρ1] and [ρ]′ is a
unique element ofL with this property. To verify (3.4), suppose that [ρ] ⊕ [ρ1]
is defined. Thenp(ρ)+ 1≤ 1 that implies thatp(ρ) = 0. Hence, [ρ] = [ρ0]. We
conclude thatL is an effect algebra. If [ρ] ≤ [σ ] then p(ρ) ≤ p(σ ). Hence,

[ρ] ⊕ [ρp(σ )−p(ρ)] = [σ ]

so that [ρ] ¹ [σ ]. Conversely, if there exists aδ ∈ D such that [ρ] ⊕ [δ] = [σ ],
then p(ρ)+ p(δ) = p(σ ) so thatp(ρ) ≤ p(σ ). Hence, [ρ] ≤ [σ ]. It follows that
≤ and¹ coincide. It is clear that (3.5) and (3.6) hold. To verify (3.7) suppose that
[σ ]⊥ [δ]. Then p(σ )+ p(δ) ≤ 1 and we have

[ρ] ◦ ([σ ] ⊕ [δ]) = [ρ] ◦ [ρp(σ )+p(δ)] = [AND (ρ , ρp(σ )+p(δ))]

Now

p[AND (ρ , σ )] + p[AND (ρ , δ)] = p(ρ)p(σ )+ p(ρ)p(δ) ≤ 1

so that [AND (ρ , σ )]⊕ [AND (ρ , δ)] is defined. Moreover,

p(ρ)[ p(σ )+ p(δ)] = p[AND (ρ , ρp(σ )+p(δ)]

Hence,

[ρ] ◦ ([σ ] ⊕ [δ]) = [AND (ρ , ρp(σ )+p(δ))] = [AND (ρ , δ)] ⊕ [AND (ρ , δ)]

= [ρ] ◦ [σ ] ⊕ [ρ] ◦ [δ]

To verify (3.8), since

p(AND (ρ , AND (σ, δ))) = p(ρ)p(σ )p(δ) = p(AND (AND (ρ , σ ), δ))

we have that

[ρ] ◦ ([σ ] ◦ [δ]) = ([ρ] ◦ [σ ]) ◦ [δ]

It follows that L is a commutative SEA. To show thatp : L → [0, 1] is an iso-
morphism, it is clear thatp([ρ1]) = 1 so (3.9) holds. Now [ρ]⊥ [σ ] if and only if
p(ρ)+ p(σ ) ≤ 1 in which case

p([ρ] ⊕ [σ ]) = p([ρ]) ⊕ p([σ ])

so (3.10) holds. Also,p([ρ] ◦ [σ ]) = p([ρ]) p([σ ]) so (3.11) holds. Finally, given a
λ ∈ [0, 1] we havep(ρλ) = λ so thatp is surjective. ¤
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An elementa of an effect algebra issharpif a ∧ a′ = 0. Since the only sharp
elements of [0, 1] are 0 and 1, it follows from Theorem 3.1 that the only sharp
elements ofL are [ρ0] and [ρ1]. We conclude that the QCL is a purely “fuzzy logic”
all of whose elements are unsharp except for the trivial elements [ρ0] and [ρ1].
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