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Quantum Computational Logic
S. Guddert
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A quantum computational logic is constructed by employing density operators on spaces
of qubits and quantum gates represented by unitary operators. It is shown that this
guantum computational logic is isomorphic to the basic sequential effect algebra [0, 1].
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1. INTRODUCTION

In an interesting paper (Cattanebal, in press), the authors develop a new
form of quantum logic based on the theory of quantum computation (Nielsen and
Chuang, 2000; Pittenger, 2001). In this presentation, the semantics are given in
terms of pure states of amqubit quantum system and logical connectives are
interpreted as quantum gates represented by unitary operators. The present paper
generalizes the work of Cattanet al. (in press) to mixed states of amqubit
guantum system. It is also shown that the resulting quantum computational logic is
isomorphic to the basic sequential effect algebra [0, 1]. Sequential effect algebras
were recently introduced to study the sequential action of quantum effects that
are unsharp versions of quantum events (Gudder and Greechie, in press-a,b). For
further details and a discussion of quantum computational semantics, we refer the
reader to Cattaneet al. (in press).

2. DENSITY OPERATOR COMPUTATIONAL LOGIC

In the theory of quantum computationgabitis a two-dimensional quantum
system. A pure qubit state is represented by a unit végtan the two-dimensional
Hilbert spaceC?. Denoting the standard orthonormal basis@by |0) = (1, 0),
|1) = (O, 1) we call{|0), |1)} the computational basifor the qubit. We can then
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write
[¥) = al0) + b|1)

wherea, b € C with |a|? + |b|? = 1. For a positive integem, ann-qubitis a 2'-
dimensional quantum system. In this case, the pure states are represented by unit
vectors in®"C2 = C?'. The 2' unit vectors of the formiy) ® --- ® [in), ij €

{0,1}, ] =1,... n, give thecomputational basidor an n-qubit. It is standard
practice to use the notation

ligig -+ in) = lig)liz) -+ lin) = [i1) ® |i2) ® - ® [in)
An arbitrary puren-qubit statgy) € C?', ||y|| = 1 has the form
W)= @, iy lix-in) 1)
wherea;, - - -, € Cwith > |, ---i, [>=1,i; € {0, 1}, ] =1,...,n.
Employing (2.1) we can write
W) = a, i, Olia- i, O+ Y@, iy, Uiz -in-al)
= Yo) + [¥1) = [¥6)[0) + [¥/1)[2)

whereyo L1, [[Voll? + [[vl12 = L, |[Woll = [[¥oll, [[¥4]] = [1¥4]]. We call|yo)

a Ovectorand|y;) a 1vector Thus, any pur@-qubit state has the unique repre-
sentation as the sum of a 0-vector and a 1-vector in the computational basis. We
think of a 0-vectors as having truth-value “false” and 1-vectors as having truth-
value “true.” LetP, be the orthogonal projections onto the span ofitlectors,

i =0,1.ThenPy + P, = |. LetD(C?") be the set of density operators A and

letD = Uﬁ‘;li)((czn). Of course, elements @(C?") correspond to mixed-qubit
states. Fop € D(C?") we define theprobability of p by

p(p) = tr(Pp) = tr(pP1)
For example, for a one-dimensional projectign (| we have

() (Y1) = tr(Pol ) (W[ Py) = tr(|ra) (Yal) = [[¥a]]?
For the uniformly distributed density operatof2" we have

1V Lypy o202
Plon ) =" ="%7=3

For p,o € D we write p |= o if p(p) < p(o). Note that/= is a reflexive,
transitive relation. We writep ~ o if p(p) = p(o). Thus,p ~ o if and only if
o |= 0 ando |= p. Then~ is an equivalence relation d? and we denote the
equivalence class containingoy [p]. We define p] < [o]if p(p) < p(c). Then
<iswell-definedorL. = {[p] : p € D}andis apartial order relation. (o) = 1,
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we call [p1] atautologyand if p(pg) = 0 we call [og] anabsurdity Then [og] and
[p1] are the least and greatest elements of the partially orderéd sespectively.

For [p] € L we definep([p]) = p(p).
The NOTgateon C?' is the unitary operatoN given by the 2 x 2" matrix
N = Ion-1 ® X whereX is the Paul matrix

0 1
X = [1 O}
For p € D(C?") we define NOp by NOTp = NpN. Then NOTp € D(C?).
SinceX? = | we haveN? = | so that NOT(NOpD) = p.

Lemma2.1. (@) Njy) = |1ﬁ0)|1> + |1Zl)|0). (b) NN = PLand NRN = P,.

Proof: (a) For an arbitrary pure stat¢) € C2" we have
N[) = (Lt ® X)(1¥0)|0) + [¥1)1) = [¥6) X|0) + [1) X|1)
= Vo) |1) + 1¥/1)10)
(b) Applying part (a) we have
NPRN[Y) = NPy} 1) + [¥/1)10) = N[¥71)|0) = [v71)]1)
= Y1) = Pu|y)|
Hence,N PPN = P;. SinceP, + P, = |, we have
| =NIN=NRPRN+NPN =P, +NPN
HenceNP N =1 — P, = P,. a

It follows from Lemma 2.1 that
P(NOTp) = tr(PLNpN) = tr(N PLNp) = tr(Pop)
= tr(p) — tr(Prp) = 1 — p(p)

We conclude that |= o impliesthat NOB |=NOTp. We define p]’ = [NOTp].
Thenfp]” = [pl], [p] < [o]impliesthatp]” < [p]"and [oo]" = [p1], [p1]" = [ral.
It follows that (L, <,”) is a bounded orthoposet that we call theantum compu-
tational logic (QCL).

Following Cattaneet al. (in press), we now introduce the nonclassical gate
+/NOT. LetM be the 2x 2 unitary matrix

1140 1-i
M_E[l—i 1+i}
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We then havéM = /X and+/N = In: ® M. (These operators have four square
roots and we are only considering one of them.) Y.dte the Pauli matrix

0 —i
Y= [i 0 }
and define the unitary™x 2" matrix R by R=I»1® Y. We now define
VNOTp = +/N" p+/N. Of course o/NOT(v/NOTp) = NOTp.
Theorem 2.2. p(v/NOTp) = 3 + 1tr(Ro).

Proof: From the definition of/N we have
VNTY) = las @ M*(170)[0) + 19/1)11)) = [§6)M[O) + [471) M)

"”—0[(1 |)|01+(1+|)|1]+"”—1[(1+|)1|o )+ (LD

= 5[(1 = Dlo) + @+ DIF]I0) + 5[(1+i)|&0> +@=DIY

Hence,
VNPWN'|y) = g[(n DIvo) + (1 — 1))

— LA +)To) + Q=DM

2

1

Z[(1+|)|Wo +(@= DA - DI0) + (1 +1)11)]
1 - - i~ i~

= SIoll0) + |w1>|1> + '§|wo>|1> - '§|wl>|0>

1 -

5 )+ = (|1//0 ML) — [¥1)10))

(2' +5 R) V)

We conclude thay N Piv/N* = 31 + 1R Thus,
p(+v'NOTp) = tr(Piv/N” ,0«/— ) = tr(v'N P.v/N"p)

——tr(,o)+ tr(R,o) 1-+ tl’(R,o)
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It follows from Theorem 2.2 that

p(NOTVNOTp) = p(+'NOTNOTp) = % - %tr(R,o)

For the uniform density operator we have

—— | 1 1 R 1

Corollary 2.3. For a one-dimensional projection) (¥ | we have

1 .~
POVNOTIY ) (Y1) = 5 — Im (Y1 | ¥o))

Proof: Applying Theorem 2.2 gives
1 1 1 1 - ~
P(VNOTIY ) (¥ ]) = >t Etr(RIW(lﬂl) =57t Etr[R(lonO) + I D) (]

1 0, ~
= 2+ (1T — G0N (¥ ]

22

N - - i
=S+ Iétr[(|wo)|l) — [ )10 (Wol O + (F41(1N)]
I -
=3 + é[Wl | Vo) — (Yo | ¥1)]

1 ~ ~
=57 Im((¥1 | ¥o)

O
Thequantum Toffoli gate ™1 : €2 — €2™" s the unitary operator
given by
T(m’n'l)|i1' cdmjre- jnk) =iz -imjr- - jn) | (im - jn 4+ k) (mod 2)

Forp € D(C?"), o € D(C?), following Cattaneet al.(in press) we define AND
(0, o) € DC*""™) by

AND(p, ¢) = T™"Dp @ o ® |0)(0] T ™1

On the QCLL we define AND (p], [¢]) as [AND (p, o)]. It follows from our
next result that this is well-defined. We denote the projecBpon C?' by Pl(").
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Theorem 2.4. (a) For p € D(C?"), o € D(C?") we have
TMNOP T ) @ 6 ®10)(0] = P{™p ® P"o © [0)(0)
(b) For p, 0 € D we have JAND (p, o)) = p(p)p(o).

Proof: (@) Since
T p T, @ 6 @ 10)(0]liz- -+ imj1- - jn0)
= TP T sliy - im)o|jo- -« jn)|O)
=Ppliz--im)P{Vc|j1- - jn)[0)
= P™p ® P |0)(0fiz -+ -imj1- - jn0)
the result now follows. (b) Fas, o € D we have by part (a) that
P(AND(p, 0)) = tr(TM™" VP, TMND) @ & @ |0)(0])
=tr(P{"p ® P{"c ®10)(0])

= tr(P{"p)tr(P{"o’) = p(p)p(o)

For p, o € D we define
OR(p, o) = NOT[AND(NOTp, NOTo)]
Applying Theorem 2.4(b) we have

P(OR(p, o)) = p(p) + p(o) — p(p)p(o)

On the QCLL we define OR (], [¢]) = [OR(p, o)] and the previous equations
shows that this is well-defined. In summary, we have defined the logical connectives
NOT, AND, and OR on the QCL.

3. SEQUENTIAL EFFECT ALGEBRAS

Effect algebras (DvuiEnskij and Pulmannay2000; Foulis and Bennett,
1994; Giuntini and Greuling, 1989;dfka and Chovanec, 1994) and sequential
effect algebras (Gudder and Greechie, in press-a,b) are algebraic systems that
have recently been introduced to study the structure of unsharp quantum events.
An effect algebras a systemE, 0, 1,®) where 0, 1€ E and® is a partial binary
operation orE that satisfies the following conditions.

(3.1) Ifa® bis defined, the @ a is defined andb da =ad b.
(3.2) Ifa® band @ @ b) ® care defined, theh @ c anda @ (b & c) are defined
anda® (bdc)=(adb)dc.
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(3.3) For evenya € E there exists a uniqu& € E suchthab@ a’ = 1.
(3.4) Ifa® 1 is defined, thea = 0.

We define a partial order relatignon E by a < bif there existsac € E such
thata @ ¢c = b. We writea L bif a < b'. It can be shown thaf{, <,’) is a bounded
orthoposet with least and greatest elements 0 and 1, respectively. Mogeayvbr,
is defined if and only ia L b.

Although there is a general theory of sequential effect algebras, we shall only
be concerned with the commutative case hereommutative sequential effect
algebra(SEA) is a systemHK, 0, 1,®, o) where E, 0, 1,®) is an effect algebra
ando : E x E — E is a binary operation that satisfies the following conditions.

(3.5) Forevena,be E,aob=boa.

(3.6) Foreverya € E, 1loa = a.
(3.7)IfbLc,thenaoblaocandaoc(b®c)=aobedaoc.
(3.8) Foreverna,b,ce E,ao(boc)=(aob)oc.

There are many examples of SEAs (Gudder and Greechie, in press-a,b). How-
ever, for our present discussion, we are only interested in the examplefOR1]
The unitinterval ([0, 1], 0, 1¢p, o) is a commutative SEA whei@® b is defined
ifa+b<1inwhichcase@®b=a+bandaob=abforalla,be]l0,1].If
E andF are SEAs, a map : E — F is anisomorphismif ¢ is surjective and
satisfies:

3.9)¢(1)=1.
(3.10)a L bif and only if ¢(a) L ¢(b) and in this case(a & b) = ¢(a) & (b).
(3.11)¢p(a o b) = ¢(a) o ¢(b) for everya, b € E.

If there is a isomorphism fronkt to F we say thatE and F are isomorphic
Isomorphic SEAs are indistinguishable as far as their SEA structure is concerned.
ForO0< A < 1, we define
@a-x) A
on—1 Po + on-1

Thenp(pi) = tr(Pyp)) = A. For,p, o € Dif p(p) + p(c) < 1 we define

oA = P, € D(C%)

(o]l ®[o] = [P P)+p)]
We then have
p(o] & [o]) = p(le]) + p(o])
Moreover, we definegd] o [c] = AND ([ p], [¢]) and we have

p(lp] o [o]) = p([e]) P(lo])

We have thus defined the partial binary operatiand the binary operationon
the QCLL.
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Theorem 3.5. The QCL(L, [po], [01], &, o) is acommutative SEA and the logic
order < coincides with the effect algebra ordgr Moreover, p: L — [0, 1]is an
isomorphism.

Proof: It is straightforward to show that the commutative and associative laws
(3.1), (3.2) hold inL. To verify (3.3), note thatd] @ [p]’ = [p1] and [o]’ is a
unique element ot with this property. To verify (3.4), suppose thaf [ [p1]

is defined. Therp(p) + 1 < 1 that implies thap(p) = 0. Hence, p] = [po]. We
conclude that is an effect algebra. Ifd] < [o] then p(p) < p(c). Hence,

[0] ® [Ppo)-p(w] = [o]

so that p] < [o]. Conversely, if there exists &€ D such that p] & [8] = [o],
thenp(p) + p(8) = p(o) so thatp(p) < p(o). Hence, p] < [o]. It follows that

< and= coincide. It is clear that (3.5) and (3.6) hold. To verify (3.7) suppose that
[0] L[8]. Thenp(o) + p(8) < 1 and we have

[p] o (o] @ [8]) = [p] o [Pp(o)+p5)] = [AND (p, pp(a)+p(s))]
Now

P[AND (p, o)] + P[AND (p, 8)] = p(p)p(o) + p(p)P(s) = 1
so that [AND (o, 0)]® [AND (p, 8)] is defined. Moreover,

P(p)[P() + P(8)] = PIAND (o, pp(o)+p(s)]
Hence,
[p] o ([o] ®[8]) = [AND (0, pp(e)+pis))] = [AND (0, 8)] @ [AND (p, 5)]
= [plolo] @ [p] o [4]
To verify (3.8), since
P(AND (p, AND (0, 6))) = p(p)p(c)p(8) = P(AND (AND (p, o), 5))
we have that
[p] o ([o] o [8]) = ([p] o [0]) o [4]

It follows that L is a commutative SEA. To show that: L — [0, 1] is an iso-
morphism, it is clear thap([p1]) = 1 so (3.9) holds. Nowd] L [o] if and only if
p(p) + p(o) < 1in which case

p(le] @ [o]) = p(lo]) ® p([o])

s0(3.10) holds. Alsop([p] o [¢]) = p([e]) p([c]) so (3.11) holds. Finally, given a
A € [0, 1] we havep(pA) = A so thatp is surjective. O
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An elementa of an effect algebra isharpif a A @ = 0. Since the only sharp
elements of [0, 1] are 0 and 1, it follows from Theorem 3.1 that the only sharp
elements of_ are [pp] and [p1]. We conclude that the QCL is a purely “fuzzy logic”
all of whose elements are unsharp except for the trivial elemegitand [o1].
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